Section 2.3

The Product Rule: The product of two differentiable functions f and g is itself differentiable. Moreover, the derivative of $f g$ is the first function times the derivative of the second, plus the second function times the derivative of the first.

$$
\frac{d}{d x}[f(x) g(x)]=f(x) g^{\prime}(x)+g(x) f^{\prime}(x)
$$

1) Find the derivative of the following functions using the Product Rule.
a) $f(x)=\left(5 x-4 x^{3}\right)\left(2 x^{4}+6\right)$
b) $g(x)=-5 x^{3} \cos x$
c) $h(x)=3 x \sin x+3 \cos x$

The Quotient Rule: The quotient f / g of two differentiable functions f and g is itself differentiable at all values of x for which $g(x) \neq 0$. Moreover, the derivative of f / g is given by the denominator times the derivative of the numerator minus the numerator times the derivative of the denominator, all divided by the square of the denominator.

$$
\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}, \quad g(x) \neq 0
$$

2) Find the derivative of the following functions using the Quotient Rule.
a) $f(x)=\frac{3 x^{2}-7}{2 x+5}$
b) $g(x)=\frac{2 x+5}{3-\frac{4}{x}}$

3) Find the equation of the tangent line to $f(x)=\frac{2+x}{1-x}$ at $x=2$.

Derivatives of Trigonometric Functions:

$$
\begin{aligned}
\frac{d}{d x}[\tan x] & =\sec ^{2} x & \frac{d}{d x}[\cot x] & =-\csc ^{2} x \\
\frac{d}{d x}[\sec x] & =\sec x \tan x & \frac{d}{d x}[\csc x] & =-\csc x \cot x
\end{aligned}
$$

4) Show that $\frac{d}{d x}[\cot x]=-\csc ^{2} x$ using the quotient rule.
5) Find the derivative of $f(x)=x^{2} \csc x$.
6) If $f(x)=x \sin x$, find the following:
a) $f^{\prime}(x)$
b) $f^{\prime \prime}(x)$
c) $f^{\prime \prime \prime}(x)$
7) The position function for an object falling from a height of 10 meters on Mars is given by

$$
s(t)=-1.85 t^{2}+10
$$

where $s(t)$ is the height in meters and t is the time in seconds. What is the ratio of Earth's gravitational force to that of Mars?

Homework for this section: Read the section and watch the videos/tutorials. Then do these problems in preparation for the quiz: $\# 5,11,17,19,25,53,74,101$

